(33) 4.2 The Rolle's Theorem (B)

Example 7 19 July 29, 2000 Show that equation $x^7 + 5x + 3 = 0$ has exactly one real root

Solution

let $f(x) = x^7 + 5x + 3$ ∴ f cont. on R f diff. on R f(0) = 3 > 0 f(-1) = -1 - 5 + 3 = -3 < 0∴ $\exists c \in (-1,0)$ such that f(c) = 0 *I.V.T* ∴ the equation f(x) = 0 has a real root in (-1, 0) $f^{(x)} = 7x^6 + 5 > 0$

let $c_1 \& c_2$ are two real roots of the equation f(x) = 0 such that $c_1 \le c_2$ f cont. on $[c_1, c_2]$ f is difficult on (c_1, c_2)

 $f \text{ is diff. on } (c_1, c_2)$ $f(c_1) = f(c_2) = 0$ $\therefore \exists K \text{ such that } f^{\setminus}(K) = 0$ Rolle's Theorem $but f^{\setminus}(x) \neq 0$ $\therefore c_1 = c_2$

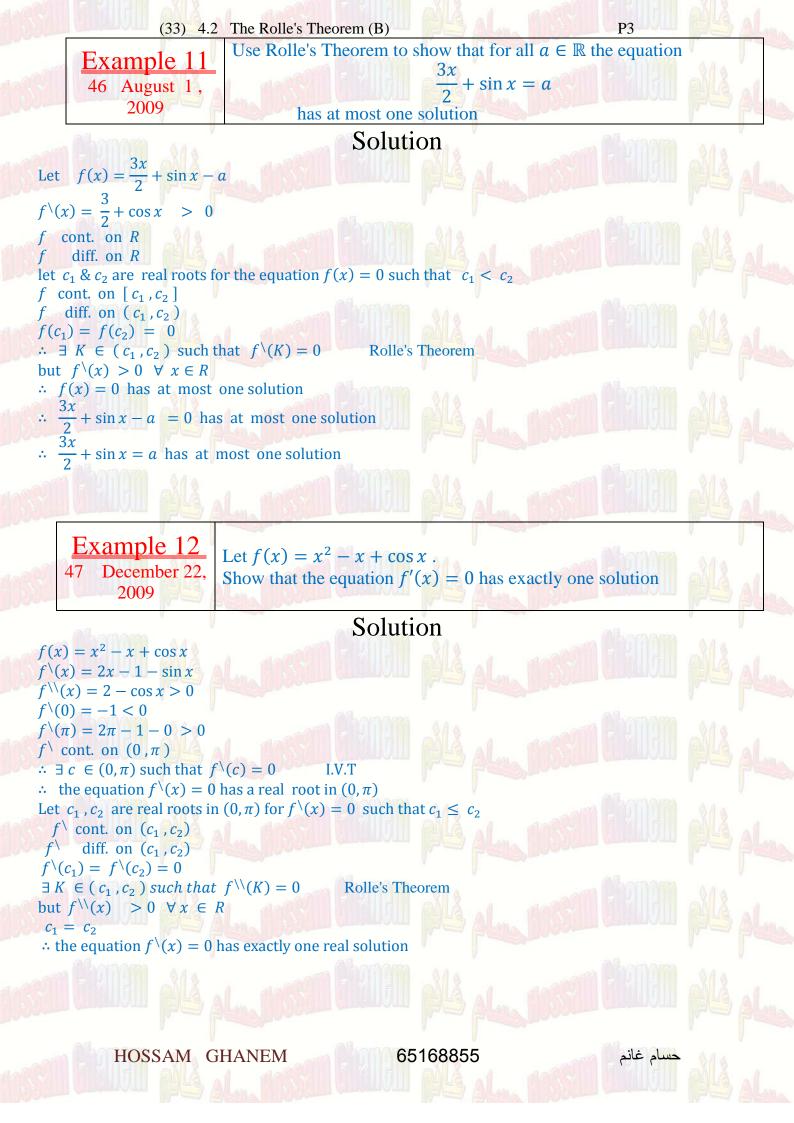
: the equation f(x) = 0 has exactly one real root

Example 8 5 July 13, 1992 Let $f(x) = \tan x + 4x - 3$. Use the Rolle's Theorem to prove that the equation f(x) = 0 has only one real root in $\left(0, \frac{\pi}{4}\right)$

Solution

 $f(x) = \tan x + 4x - 3$ \therefore f cont. on $\left[0, \frac{\pi}{4}\right]$ f(0) = 0 + 0 - 3 = -3 < 0 $f\left(\frac{\pi}{4}\right) = 1 + \pi - 3 > 0$ $\therefore \exists c \in \left(0, \frac{\pi}{4}\right)$ such that f(c) = 0I.V.T : The equation f(x) = 0 has a real solution in $(0, \frac{\pi}{4})$ $f^{(x)} = \sec^2 x + 4 > 0$ Let $c_1 \& c_2$ are real solutions in $\left(0, \frac{\pi}{4}\right)$ such that $c_1 \le c_2$ f cont. on $[c_1, c_2]$ f diff. on (c_1, c_2) $f(c_1) = f(c_2) = 0$ $\therefore \exists K \in (c_1, c_2)$ such that $f^{\setminus}(K) = 0$ **Rolle's Theorem** but $f'(x) > \forall x \in R$ $\therefore c_1 = c_2$ \therefore f(x) = 0 has only one solution

(33) 4.2 The Rolle's Theorem (B) P2			
Example 9 33 May 6, 2004Let f , $f \setminus and f \setminus be continues functions on [a, b], Suppose that thegraph of f intersect the x - axis at 3 points in (a, b).Show that f \setminus (x) = 0 has a solution in (a, b)$			
$f^{(n)}$ cont. on $[a, b]$ $f \otimes f^{(n)}$ are diff. on $[a, b]$			
let the graph intersect $x - axis$ at $c_1, c_2, c_3 \in (a, b)$ such that $c_1 < c_2 < c_3$ $\therefore f(c_1) = f(c_2) = f(c_3) = 0$ (i) f cont. on $[c_1, c_2]$ f diff. on (c_1, c_2)			
$f(c_1) = f(c_2) = 0$ $\therefore \exists K_1 \in (c_1, c_2) \text{ such that } f^{\setminus}(K_1) = 0$ (ii) f cont. on [c_2, c_3] f diff. on (c_2, c_3) f(c_2) = f(c_3) = 0 Rolle's Theorem			
$f_{1}(c_{2}) = f(c_{3}) = 0$ $f_{2} \in (c_{2}, c_{3}) \text{ such that } f^{1}(K_{2}) = 0$ Rolle's Theorem $f^{1} \text{ cont. on } (K_{1}, K_{2})$ $f^{1} \text{ diff. on } (K_{1}, K_{2})$ $f^{1}(K_{1}) = f^{1}(K_{2}) = 0$			
$\therefore \exists m \in (K_1, K_2) \text{ such that } f^{\setminus \setminus}(m) = 0$ $\therefore f^{\setminus \setminus}(x) = 0 \text{ has a solution in } (a, b)$ Rolle's Theorem			
Example 10 37 May 4, 2006Use Rolle's Theorem to show that the graph of $f(x) = x^4 + x^3 - 3x^2 + x + 1$ Cannot have more than one inflection point in [0, 1]			
Solution			
$f(x) = x^{4} + x^{3} - 3x^{2} + x + 1$ $f^{(x)} = 4x^{3} + 3x^{2} - 6x$ $f^{(x)} = 12x^{2} + 6x - 6$ $f^{(x)}(x) = 24x + 9$			
let <i>f</i> has two inflection points on (0,1) at $x = c_1$ and $x = c_2$ such that $c_1 \le c_2$ $\therefore f^{\setminus}(c_1) = f^{\setminus}(c_2) = 0$ f^{\setminus} cont. on $[c_1, c_2]$ f^{\setminus} diff. on (c_1, c_2)			
$f^{\setminus\setminus}(c_1) = f^{\setminus\setminus}(c_2)$ $\therefore \exists K \in (0,1) \text{ such that } f^{\setminus\setminus\setminus}(K) = 0$ but $f^{\setminus\setminus\setminus}(x) = 24x + 6 > 0 \forall x \in [0,1]$ $\therefore c_1 = c_2$ Rolle's Theorem			
∴ <i>f</i> Cannot have more than one inflection point in [0,1]			
son frille più annos fille più accordine più accordine più an			
HOSSAM GHANEM 65168855 حسام غانم			



(33) 4.2 The Rolle's Theorem (B)

Homework

P4

<u>1</u>	14 December 18, 1997 Show that equation $x^3 + 3x + 1 = 0$ has exactly one real root
<u>2</u>	38 January 15, 2011 Show that equation $f(x) = x^5 + x^3 - 1$ exactly one real root in [0, 1].
<u>3</u>	16 July 30, 1998Show that equation $x^3 + x - 17 = 0$ can not have two distinct real roots
<u>4</u>	Show that equation $x^3 + 5x + c = 0$ has exactly one real root
<u>5</u>	Show that equation $4x^3 - 6x^2 + 4x - 1 = 0$ has exactly one real root in (0, 1)
<u>6</u>	34 July 22, 2004 Show that $f(x) = x^4 + 2x^2 - 3x + 1$ has exactly one critical number
<u>7</u>	31 June 5, 2008 Show that equation $2x^5 + x - 1 = 0$ has exactly one real solution
<u>8</u>	If $f(x) = x^5 + 9x + 1$, Show that the equation $f(x) = 0$ has exactly one real root.
<u>9</u>	Let $f(x) = x^5 + 9x + 1$. Show that $f(x)$ is increasing function and the equation $f(x) = 0$ has exactly one real root
<u>10</u>	Show that equation $x^5 + ax + 3 = 0$, $a > 0$ has exactly one real root
<u>11</u>	44 December 21, 2008 Use Rolle's Theorem to show that the equation $x^7 + 4x^3 + x - 2 = 0$ cannot have two different roots.
<u>12</u>	49 July 24, 2010(3 Points) Use Rolle's Theorem to show that the equation $4x^3 + 4x + 3 = 0$ Cannot have more than one real root
<u>13</u>	Show that equation $x^5 + 5x + 10 = 0$ has exactly one real root
	HOSSAM GHANEM 65168855 حسام غانم

